STEROIDAL GLYCOSIDES FROM THE ROOT OF CYNANCHUM VERSICOLOR

SHENG-XIANG QIU, ZHUANG-XIN ZHANG and JUN ZHOU

Kunming Institute of Botany, Academia Sinica, Kunming, China

(Received 31 October 1988)

Key Word Index—Cynanchum versicolor; Asclepiadaceae; cynaversicoside C-E; glaucogenin D.

Abstract—Three new glycosides named cynaversicoside C, D and E with glaucogenin D as the aglycone were isolated from the Chinese crude drug 'Pai-Wei', Cynanchum versicolor. Their structures were determined on the bases of combined physio-chemical evidence as glaucogenin D:3-O- β -D-thevetopyranoside; glaucogenin D:3-O- β -D-cymaropyranosyl- $(1\rightarrow 4)$ - β -D-cymaropyranosyl- $(1\rightarrow 4)$ - β -D-cymaropyranosyl- $(1\rightarrow 4)$ - β -D-thevetopyranoside.

INTRODUCTION

The Chinese drug 'Pai-Wei', which has been used as an antifebrile and diuretic, may be Cynanchum versicolor or C. atratum [1]. They are very similar in outward appearance, and the former has been studied by Zhang et al. [2, 3] who isolated some new glycosides. In this paper, we describe the isolation and identification of three new glycosides named cynaversicoside C, D and E from C. versicolor. These compounds contain an aglycone with 13,14; 14,15-diseco-pregnane-type skeleton which was found in 'Pai-Chien' (Cynanchum glaucescens) for the first time [4-6].

RESULT AND DISCUSSION

The new glycosides showed positive Liebermann-Burchard and Keller-Kiliani reactions suggesting a Δ^5 -steroidal structure and a 2-deoxy sugar residue.

Cynaversicoside-C (2) had the molecular formula C28H40O10 as determined by EIMS as well as by elemental analysis. It contained one more oxygen atom than glaucogenin C mono-D-thevetoside (1). ¹H NMR and ¹³C NMR spectroscopy showed one anomeric proton signal at $\delta 4.34$ (d, J = 7.7 Hz) and one anomeric carbon at 102.4, indicating that 2 is a mono-glycoside. The EI mass spectrum gave a molecular ion at m/z 536 and a fragment ion due to loss of the sugar moiety [M sugar - H₂O] +. Comparing the ¹H NMR spectrum of 2 with that of 1, both were closely related except for the following: (i) the hydroxy methine proton appeared as a broad doublet at $\delta 4.61$ (d, J = 9.6 Hz); (ii) the C-6 vinyl proton signal changed from a broad doublet (J = 6.0 Hz)in the spectrum of 1 into a broad singlet in that of 2 at the same chemical shift (δ 5.40). These facts suggested that there was a hydroxyl group attached at C-7, the small coupling constant between 7-H and 6-H (<1 Hz) and the coupling constant between 7-H and 8β-H(9.6 Hz) indicated that the hydroxyl group at C-7 was β -oriented and the aglycone was galucogenin D which was isolated from C. paniculatum by Sugama et al. [4]. The signals for the sugar moiety of 2 were identical with those of 1, therefore, the sugar was assigned as D-thevetose. The ¹H NMR signals due to the anomeric proton at $\delta 4.34$ (1H, d, J = 7.7 Hz) indicated the glycosidic linkage was β , thus the structure of 2 was deduced as glaucogenin D 3-O- β -D-thevetopyranoside.

Cynaversicoside-D (3) had the molecular formula C₄₂H₆₄O₁₆ as determined by EIMS and by elemental analysis. On mild acidic hydrolysis, 3 afforded 2, diginose (6) and cymarose (5). The ¹H NMR signals due to anomeric protons at δ 5.04 (1H, d, J = 9.2 Hz), 5.12 (1H, br d, J=9.6 Hz) and 5.29(1H, br s) indicated the presence of one α and two β -glycosidic bonds. The terminal sugar was deduced to be D-cymarose and the middle one was Ldiginose by comparing the ¹³C NMR spectrum of 3 with that of methyl β -D-cymaropyranoside (5b) and methyl α -L-diginopyranoside (6a); the glycosidation chemical shift effects were observed at the C-4 carbons of D-thevetose and L-diginose. From these results, the structure of 3 was deduced as glaucogenin D 3-O-β-D-cymaropyranosyl- $(1 \rightarrow 4)-\alpha$ -L-diginopyranosyl- $(1 \rightarrow 4)-\beta$ -D-thevetopyranoside.

Cynaversicoside-E (4) had the molecular formula $C_{48}H_{74}O_{21}$ on the bases of EIMS and elemental analysis. The ¹H NMR spectrum of 4 showed four anomeric proton signals at $\delta 4.91(1H, d, J = 7.6 \text{ Hz})$, 5.04(1H, d, J = 9.2 Hz), 5.14(1H, br d, J = 9.6 Hz), 5.26(1H, br s) and four anomeric carbon signals at $\delta 98.0$, 99.3, 102.4 and 106.3. This indicated that there were four sugars in the sugar chain of 4 and one was α -linked, the others were β -linked. On mild acidic hydrolysis, 4 gave 2, strophanthobiose (7) and diginose which were identified by TLC comparison with the authentic sample.

Enzymatic hydrolysis of 4 gave a deglaucosyl derivative which was identical to 3 by $[\alpha]_D$, IR and ¹H NMR spectral comparison. Glucose in the water layer was identified by TLC comparison with an authentic sample. Thus, the structure of 4 was established as glaucogenin D $3-O-\beta-D$ -glucopyranosyl- $(1\rightarrow 4)-\beta-D$ -cymaropyranosyl- $(1\rightarrow 4)-\beta-D$ -thevetopyranoside.

3176 S.-X. Qiu et al.

EXPERIMENTAL

Mps: uncorr. 13 C NMR, 1 H NMR were run in CDCl₃ or C₅D₅N soln with TMS as int. standard. TLC was performed on Merck precoated kieselgel 60 F₂₅₄ and RP-8 F254, RP-18 F₂₅₄ CC was carried out on silica gel (200–300 mesh) and RP-8, RP-182 (Merck).

Plant material ('Pai-Wei') was obtained from Beijing market and was identified as the root of Cynanchum versicolor Bunge by Shie Tsung-Wan (Institute of Chinese Materia Medica, Academia of Chinese medicine, Beijing).

Cynaversicoside C (2). An amorphous powder, mp 124–128°; $[\alpha]_p + 49.8$ (MeOH; c 0.562). Anal. calcd. for $C_{28}H_{40}O_{14}\cdot 3/2$ H_2O : C, 59.08; H, 7.64. Found: C, 59.21; H, 7.61. IR v_{max} cm⁻¹: 3450, 2950, 1730, 1650, 1450, 1380, 1300, 1170, 1080, 1040, 870. EIMS (m/z): 536 [M]⁺, 358 [M-sugar chain-H₂O]⁺. ¹H NMR (CDCl₃): δ 0.98 (3H, s, 19-Me), 1.36 (3H, d, J = 6.4 Hz, 6'-Me), 1.54 (3H, s, 21-Me), 3.66 (3H, s, 3'-OMe), 3.84 (1H, dd, J = 9.3, 8.5 Hz, 15-CH β), 4.18 (1H, dd, J = 9.3, 7.6 Hz, 15-CH α), 4.34 (1H, d, J = 8.0 Hz, 1'-CH), 4.61 (1H, br d, J = 9.3 Hz, 7-CH), 5.36 (1H, dd, J=8.5, 7.6 Hz, 16-CH), 5.40 (1H, br s, 6-CH), 6.26 (1H, br s, 18-CH). ¹H NMR (C_5D_5N): $\delta 0.82$ (3H, s, 19-Me), 1.54 (3H, s, 21-Me), 1.60 (3H, d, J = 6.0 Hz, 6'-Me), 3.92 (3H, s, 3'-OMe), 4.14 (1H, dd, J = 10.0, 8.0 Hz, 15-CH β), 4.44 (1H, dd, J= 10.0, 7.0 Hz, 15-CH α), 4.80 (1H, d, J = 7.6 Hz, 7-CH), 5.45 (1H, dd, J=8.0, 7.0 Hz, 16-CH), 5.70 (1H, br s, 6-CH), 6.51 (1H, br s, 18-CH) 13C NMR see Tables 1 and 2.

Table 1. ¹³C NMR chemical shifts of aglycone moieties (ppm in C₅D₅N from int. TMS)

C	1	2	3	4
1	36.6	36.1	36.2	36.2
2	30.6	30.1	30.1	30.1
3	78.1	78.1	78.1	78.1
4	39.0	38.8	38.7	38.7
5	140.7	141.4	141.3	141.3
6	120.4	127.2	127.2	127.2
7	30.0	67.9	67.8	67.8
8	53.3	51.3	51.2	51.2
9	40.7	50.6	50.6	50.6
10	38.7	38.7	38.7	38.7
11	23.9	23.7	23.7	23.7
12	28.4	30.1	30.1	30.1
13	118.4	118.6	118.6	118.6
14	175.4	174.8	174.8	174.8
15	67.7	67.8	67.8	67.8
16	75.5	75.8	75.8	75.8
17	56.2	56.4	56.3	56.3
18	143.8	144.0	144.0	144.0
19	18.6	18.6	18.7	18.7
20	114.3	114.4	114.4	114.4
21	24.8	24.8	24.8	24.8

Table 2. ¹³C NMR chemical shifts of sugar moieties (ppm from int. TMS in C₅D₅N)

С	1	2	3	4		
-	D-the	D-the	D-the	D-the		
1'	102.4	102.5	102.4	102.4		
2'	75.0	75.0	74.8	74.8		
3'	88.0	88.0	85.5	85.5		
4'	75.9	75.9	80.1	80.1		
5′	72.6	72.7	72.0	72.0		
6′	17.9	17.7	16.7	17.6		
-OMe	60.8	60.8	60.2	60.2		
			L-dgn	L-dgn	5a	5b
1″			98.8	98.8	97.8	99.4
2"			32.2	32.2	31.9	35.1
3"			73.9	73.9	76.6	78.5
4′′			74.8	74.8	73.3	74.0
5''			67.3	67.3	65.3	71.0
5"			17.6	17.6	18.5	18.9
-OMe			55.4	55.4	54.8	56.0
			D-cym	D-cym	56.7	57.8
'''			99.3	99.3		
""			35.3	36.1		
3'''			79.0	78.1		
V'''			74.1	83.0		
; '''			71.1	69.5		
5'''			18.0	18.5		
-OMe			58.0	58.5		
				D-glc.	6a	6b
""				106.4	99.2	101.8
2''''				75.3	30.4	32.5
3''''				78.3	75.9	79.0
ļ''''				71.7	67.6	67.0
5''''				78.3	66.8	71.5
5""				62.9	17.5	17.5
					54.5	55.3
					55.0	55.9

the = Thevetose; cym = cymarose; dgn = diginose; glc = glucose.

Cynaversicoside-D (3). An amorphous, mp 150–152°, $[\alpha]_b = 8.7$ (MeOH; c 0.517). Anal. Calcd. for C_{4.2}H_{6.4}O₁₆·2H₂O: C, 58.60; H, 7.90. Found: C, 58.43; H, 7.89. IR ν_{max} cm⁻¹: 3480, 2940, 1735, 1650, 1450, 1380, 1300, 1190, 1170, 1080, 1020, 810. EIMS (m/z): 536 $[M-\text{cym}-\text{dgn}+\text{H}]^+$, 358 $[M-\text{sugar chain}-\text{H}_2\text{O}]^+$. ¹H NMR (C₅D₅N): δ0.82 (3H, s, 19-Me), 1.38, 1.45 (each 3H, d, J=6.0 Hz, 6", 6"-Me), 1.54 (3H, s, 21-Me), 1.60 (3H, d, J=6.0 Hz, 6'-Me), 3.48, 3.55, 3.92 (each 3H, s, 3', 3''-OMe), 4.14 (1H, dd, J=10.0, 8.0 Hz, 15-CHβ), 4.44 (1H, dd, J=10.0, 7.0 Hz, 15-CHα), 4.80 (1H, br d, J=7.6 Hz, 7-CH), 5.04 (1H, d, J=9.2 Hz, 1'-CH), 5.12 (1H, br d, J=9.6 Hz, 1"-CH), 5.29 (1H, br s, 1"-CH), 5.45 (1H, dd, J=8.0, 7.0 Hz, 16-CH), 5.70 (1H, br, s, 6-CH), 6.50 (1H, br s, 18-CH). ¹³C NMR see Tables 1 and 2.

Acidic hydrolysis of 3. To a soln of 3 (80 mg in 15 ml MeOH) was added 10 ml 0.05 M $\rm H_2SO_4$ and the mixt. kept at 50° for 1 hr. The soln was diluted with 15 ml $\rm H_2O$ and concd to 25 ml. It was kept at 70° for 30 min, neutralized with aq. satd Ba (OH)₂ soln, and the ppt. filtered, the filtrate was concd to dryness under red. pres. and chromatographed on a column of silica gel (20 g) eluted with 2% MeOH-CHCl₃ to give 4 mg D-cymarose: $[\alpha]_0 + 50.3^\circ$ ($\rm H_2O$; c 0.53), 3 mg of L-diginose: $[\alpha]_D - 60.5$ ($\rm H_2O$; c 0.54) and 15 mg of 2 which was identified with the authentic sample by TLC and ¹H NMR comparison. The R_f values of the sugars were: cymarose, 0.43, diginose, 0.46 and 2, 0.32, respect-

ively with the solvent system CHCl₃-MeOH (9:1); 0.37, 0.25 and 0.20, respectively, with solvent system Me₂CO-petrol (2:3).

Cynaversicoside E(4). An amorphous powder, mp 192–200°, $[\alpha]_D-16.7$ (MeOH; c 0.57). Anal. calcd. for $C_{48}H_{74}O_{21}\cdot 3/2$ H_2O : 56.86; H, 7.60. Found: C, 56.76; H, 7.58. IR v_{max} cm⁻¹: 3450, 2940, 1730, 1640, 1450, 1380, 1300, 1190, 1160, 1080, 1020, 990, 920. EIMS (m/z): 536 [M – glc – dgn – cym + H] +, 358 [536 – the – H_2O] +. ¹ H NMR (C_5D_5N): δ0.81 (3H, s, 19-Me), 1.38, 1.44, 1.64 (each 3H, d, d) = 6.0 Hz, 6′, 6″, 6‴-Me), 1.54 (3H, s, 21-Me), 3.49, 3.52, 3.71 (each 3H, s, 3′, 3″, 3‴-OMe), 4.14 (1H, dd, d) = 9.0, 8.0 Hz, 15-CH β), 4.44 (1H, dd, d) = 9.0, 7.0 Hz, 15-CH α), 4.80 (1H, d, d) = 7.6 Hz, 7-CH), 4.91 (1H, d, d) = 7.6 Hz, 1‴-CH), 5.04 (1H, d, d) = 9.2 Hz, 1′-CH), 5.14 (1H, d) d) = 8.0, 7.0 Hz, 16-CH), 5.70 (1H, d) d) = 8.0, 7.0 Hz, 16-CH), 5.70 (1H, d) d) = 8.0, 7.0 Hz, 16-CH), 5.70 (1H, d) d) = 8.0, 7.0 Hz, 16-CH), 5.70 (1H, d) d) = 8.0 (1H, d) = 8.0

Acidic hydrolysis of 4. Compound 4 was treated with the same process as 3 and afforded 2, diginose and strophanthobiose (7) which were identified by TLC comparison with the authentic sample, the R_f value of 7 was 0.35 with the solvent system CHCl₃-MeOH (4:1).

Enzymatic hydrolysis of 4. A suspension of 4 (80 mg) and powdered snail digestive juice (80 mg) in 10 ml 0.3 M NaOAc buffer adjusted to pH 5.5 was allowed to stand at 37° for 7 days.

3178 S.-X. Qiu et al.

The TLC analysis with MeOH–CHCl₃ (1:9) system revealed the formation of 3, the soln was coned and the residue subjected to silica gel CC eluted with 4% MeOH–CHCl₃ system to give 3 (25 mg) which was identified with authentic sample by TLC, $[\alpha]$, IR and ¹H NMR comparison.

Acknowledgements—This work was supported by grants from International Foundation For Science in Sweden (Grant-in aid No. F/1165-1). All spectral measurements were carried out by the Equipment Group of Phytochemistry Department, Kunming Institute of Botany. We are grateful to Ms Chen Rong for her assistance.

REFERENCES

- Shie, T.-W., Liu, M.-L. and Lou, T.-C. (1959) Acta Pharm. Sinica, 7 175.
- Zhang, Z.-X., Zhou, J., Hayashi, K. and Mitsuhashi, H. (1985) Chem. Pharm. Bull. 33 1507.
- Zhang, Z.-X., Zhou, J., Hayashi, K. and Mitsuhashi, H. (1985) Chem. Pharm. Bull. 33, 4188.
- 4. Sugama, K., Hayashi, K., Mitsuhashi, H. and Kaneko, K. (1986) Chem. Pharm. Bull. 34, 4500.
- Nakagawa, T., Hayashi, K., Wada, K. and Mitsuhashi, H. (1983) Chem. Pharm. Bull. 31, 2244.
- Nakagawa, T., Hayashi, K., Wada, K. and Mitsuhashi, H. (1983) Tetrahedron 39, 607.
- Nakagawa, T., Hayashi, K., Wada, K. and Mitsuhashi, H. (1983) Chem. Pharm. Bull. 31, 879.